Surface-induced effects in fluctuation-based measurements of single-polymer elasticity: A direct probe of the radius of gyration.

نویسندگان

  • Sarah N Innes-Gold
  • Ian L Morgan
  • Omar A Saleh
چکیده

Single-molecule measurements of polymer elasticity are powerful, direct probes of both biomolecular structure and principles of polymer physics. Recent work has revealed low-force regimes in which biopolymer elasticity is understood through blob-based scaling models. However, the small tensions required to observe these regimes have the potential to create measurement biases, particularly due to the increased interactions of the polymer chain with tethering surfaces. Here, we examine one experimentally observed bias, in which fluctuation-based estimates of elasticity report an unexpectedly low chain compliance. We show that the effect is in good agreement with predictions based on quantifying the exclusion effect of the surface through an image-method calculation of available polymer configurations. The analysis indicates that the effect occurs at an external tension inversely proportional to the polymer's zero-tension radius of gyration. We exploit this to demonstrate a self-consistent scheme for estimating the radius of gyration of the tethered polymer. This is shown in measurements of both hyaluronic acid and poly(ethylene glycol) chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Estimation of the Unperturbed Chain Dimensions of Poly(Vinyl Chloride) Polymer by Various Methods

Flory Fox, Kurata-Stockmayer, Berry, Inagaki-Suzuki-Kurata, Stockmayer-Fixman and Ahmad-Baloch methods based on the excluded volume theory have been applied to poly(vinyl chloride)-cyclohexanone system to obtain Kq and the radius of gyration. A discussion on the reliability of these methods is given. The Stockmayer-Fixman and Ahmad-Baloch methods are found to be...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore.

Using two approaches, small-angle neutron scattering (SANS) from bulk solutions and nanopore conductance-fluctuation analysis, we studied structural and dynamic features of poly(ethylene glycol) (PEG) water/salt solutions in the dilute and semidilute regimes. SANS measurements on PEG 3400 at the zero-average contrast yielded the single chain radius of gyration (Rg) over 1-30 wt %. We observed a...

متن کامل

Linear Shear Response at Strongly Adsorbing Surfaces

The linear-response effective shear moduli of polymer melts confined between strongly adsorbing surfaces (parallel plates of mica) was studied as a function of the excitation frequency. Linear response (achieved with shear amplitudes of e 2 A) implies that measurements did not perturb the film structure. The measurements employed a surface forces apparatus modified for dynamic mechanical shear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 148 12  شماره 

صفحات  -

تاریخ انتشار 2018